
Static Analysis for Syntax Objects

David Fisher
Georgia Institute of Technology

dfisher@cc.gatech.edu

Olin Shivers
Northeastern University
shivers@ccs.neu.edu

Abstract
We describe an s-expression based syntax-extension framework
much like Scheme macros, with a key additional facility: the ability
to define static semantics, such as type systems or program analy-
sis, for the new, user-defined forms or embedded languages, thus al-
lowing us to construct “towers” of language levels. In addition, the
static semantics of the languages at two adjacent levels in the tower
can be connected, allowing improved reasoning power at a higher
(and perhaps more restricted) level to be reflected down to the static
semantics of the language level below. We demonstrate our system
by designing macros for an assembly language, together with some
example static analyses (termination analysis, type inference and
control-flow analysis).

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—extensible languages, macro
and assembly languages; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—program anal-
ysis; D.3.3 [Programming Languages]: Language Constructs
and Features—control structures, classes and objects, constraints,
frameworks, inheritance, polymorphism

General Terms Languages, Design

Keywords Extensible programming languages, domain-specific
languages, macros, language towers, static analysis, type inference,
flow analysis, lazy delegation

1. Scheme macros: strengths and limitations
The most successful and widely employed extensible-syntax sys-
tem in use today, by a large margin, is the LISP family’s macro
facility, including the “hygienic” macros developed for Scheme. It
is a standard part of the everyday programming task for Lisp and
Scheme programmers to define custom notations that permit their
domain of programs to be expressed clearly and concisely, whether
that task be data-base queries, string searching, Unix scripts, text
parsing, VLSI design or airline reservation queries.

Once one has become accustomed to such a powerful tool, it
is hard to give it up. When we find ourselves writing programs in
languages such as Java, SML, or C—languages, that is, that lack
Scheme’s syntax-extension ability—we find that we miss it greatly.
We’d love to be able to “peel” Scheme’s macro system away from
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the rest of the language and apply it as a general-purpose syntactic
front end to other languages.

Unfortunately, this is not a straightforward task. The are two key
issues that bind the design of the Scheme macro system tightly to
Scheme:

• Focus on expressions
Scheme’s system only allows the programmer to invoke macros
in expression contexts. In the context of Scheme, this is not
much of a hindrance, because Scheme has such a spare syntax:
there is very little text in a Scheme program that isnot an
expression. However, if, for example, one wanted to define a
macro that would be invoked in the parameter list of aλ form,
or could be used in place of a(var exp) binding clause in a
let form, one could not use Scheme’s expression macros.

• Static semantics
A Scheme macro is essentially “specification by compiler:”
we define the meaning of a piece of syntax by providing a
translation to a base language (that is, to core Scheme). As
semanticists, we might quibble with this, but it works well as an
engineering solution to define dynamic semantics in this way.
However, Scheme macros do not provide a way to define static
semanticsdirectly in terms ofthe new form. Instead, the static
semantics gets “dragged along” with the dynamic semantics by
virtue of the translation.

This is not a problem in Scheme because it has such a spare
static semantics: with no type system, all Scheme really pro-
vides by way of static semantics is a lexical-scoping disci-
pline for resolving names. So it is no accident that the “hy-
giene” facility of Scheme macros provide exactly the ability to
statically (that is, at macro-execution time) manipulate name
resolution—and no more.

The latter issue is the more serious barrier. Imagine that we did,
somehow, manage to construct a Scheme-like macro system for
programming in C. That is, we would define an s-expression con-
crete syntax for C, where one might write “(if exp stmt stmt)”
instead of the usual “if (exp) then stmt else stmt” form. We
would add to this language the ability to define macros, tagged
with source-to-source expanders written in Scheme. The C com-
piler would be altered to read in the new syntax, and it would con-
tain a Scheme interpreter to use in executing macro expansions at
compile time.

How would we type-check a program written in such a lan-
guage? We would have to first macro-expand the program into base
C and then check that code. This would work, in the sense of being
correct, but it would be a disaster in practice. When a program-
mer made a type error, the error would be reported, not in terms of
the program originally written, but in terms of its expansion. For
sophisticated macros that provide complete domain-specific lan-
guages, such as SQL queries, regular expressions or LALR parser
tools, such error reporting would be next to useless, as the con-
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nection between the original form and the translated form is quite
complex.

Again, this has not traditionally been a problem for Scheme
programs, because they essentially have no static semantics to be
checked.

2. Adding static semantics with Ziggurat
Our task in this paper is to describe a system, which we call Ziggu-
rat, that addresses these problems. Ziggurat allows the programmer
to define syntactic extensions to a language and define both dy-
namic and static semantics for the new forms. Thus programmers
can develop task- or domain-specific languages that have their own
static semantics. The static semantics can be checked at compile
time in terms ofthe original source.

As a second benefit, the static semantics of a term written in
a macro-embedded higher-level language can be used to define
the static semantics of its realisation at the next layer down in
the language tower. This is a critical benefit, since frequently the
point of a specialised notation is that it has restricted dynamic
semantics—which corresponds to richer static semantics, or more
precise compile-time analysis.

For example, if we describe a computation using a regular
expression, it is easy to reason about its static properties (e.g., it
is trivially true that the computation terminates on finite input). If
we translate the regular expression into the equivalent finite-state
automatonrendered in C, then we need more powerful analyses to
reason about the behaviour of the program. Thus, if we can connect
static semanticsacrossthe layers of our language tower, we can
potentially improve the quality of the reasoning we can perform on
the source code.

Ziggurat directly addresses our desire to “peel away” Scheme’s
macro system and employ it for languages with significant amounts
of static semantics: Although it is written in Scheme, it a general-
purpose tool. To make this explicit, the example applications we
will consider in this paper will be extensions to assembly language,
along with associated static analyses, which is about as un-Scheme-
like as we can manage.

3. Lazy delegation
Ziggurat uses a specialized object-oriented system we calllazy del-
egation.An object in this system is created dynamically, and inter-
acts with other objects by sending messages. Unhandled messages
are passed off to an object’s super object. However, unlike other
systems of this kind, such as Self [24], super objects are not instan-
tiated at object-creation time, but rather, are calculated on demand.

All objects have a class, similar to most object-oriented sys-
tems. (Unlike other object-oriented systems, however, classes are
not required to have a hierarchical structure, and thus cannot be
considered subtypes.) A class is defined not only by its methods,
but also by a special delegation function, that calculates the super
object for objects of that class.

Figure 1 shows an example of creating classes and objects. This
code creates two classes to represent numbers: a class to hold real
numbers, and a class to hold integers. These two classes have very
different internal representations: an integer is represented by a sin-
gle Scheme integer, while a real number is represented by a pair of
the mantissa and exponent.real-class is defined as a “top” class,
meaning that an object of classreal-class has no super object.
int-class is defined with a rewrite function that takes an integer,
and returns an object of classreal-class. Ziggurat objects do not
have multiple elements of internal state.1 Instead, an object has a

1 At least, not in our initial prototype design. We will likely add multiple
instance variables in a later revision.

; Real number objects are described
; by a pair of integers (m . e), where
; the value x is determined by
; x = m * 10^e
(define real-class (make-top-class))

; Integer objects are described by a
; single integer; to instantiate as
; real number, use an exponent of 1.
(define int-class
(make-class
(λ (x) (make-object real-class

(cons x 0)))))

(define int-20 (make-object int-class 20))

Figure 1. Creating classes and objects

(declare-method (num->string n))

(method real-class num->string
(λ (n)
(let* ((data (view real-class n))

(mant (car data))
(exp (cdr data))
(m (number->string mant))
(e (number->string exp))

(string-append m "E" e))))

(method int-class num->string
(λ (n)
(let ((snum (view int-class n)))

(number->string n))))

Figure 2. Creating methods

single piece of internal data, its “internal representation.” This is
what is passed to the lazy-delegation creation function when a su-
per object must be instantiated. Object methods access this datum
with theview form. For example, note that theint-class rewrite
function does not take an object of classint-class, but rather, the
internal representation of that object.

Figure 2 shows an example of method definition in Ziggurat.
The declare-method form defines a methodnum->string, in-
voked in the style of a generic function. Themethod forms define
how the different classes handle thenum->string message. Ob-
jects of thereal-class class first extract their internal represen-
tation using theview function, and then render their mantissa and
exponent in scientific notation, while the specialisedint-class
objects simply render themselves as a simple integer.

The laziness of lazy delegation comes in handy in cases where
we want to do some computation before fixing an object to delegate
to. This functionality is not commonly needed, but is useful in
building a macro system, as we shall see.

4. A macro system using lazy delegation
Lazy delegation objects present a natural way to represent syntax
and macros. We represent each piece of syntax as an object, and use
the rewrite function to hold a compilation function for that object.
Thus a new syntax node—say, a multi-way conditional form—can
delegate messages to the syntax node to which it expands (presum-
ably a tree of nested if/then/else nodes). However, it can also in-
tercept any messages it wishes to override and directly handle them
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with methods of its own; we will exploit this to implement extended
static semantics, later.

A macro definition contains two functional parts: a parsing
function, and a rewrite function. In Ziggurat, each macro describes
a class of syntax object, where the rewrite function of the macro is
the rewrite function of the class.

Consider a Scheme macro(apply-to-self e) that takes an
expressione, and rewrites it to an application of that expression to
itself of the form(e e). The equivalent macro in Ziggurat would
define a classapply-to-self. The data that each object of this
class contains would be represented as a hash table. This table
would have a single field, with the keyfun. That field would con-
tain a Scheme expression corresponding to the function (and ar-
gument) sub-expression ofapply-to-self. The rewrite function
would create a new syntax object that represents the translated
expression presented above. Then, a parse function that takes a
Scheme list starting with the symbolapply-to-self and returns
an object of classapply-to-self would be inserted into the top-
level Scheme environment.

In Ziggurat, this can be done by having the language designer
manually specify these functions, roughly corresponding to what
Scheme implementations often call “low-level” macros. Since the
method of specifying pattern-based “high-level” macros is often
dependent on the language being extended, we do not commit to
a single high-level macro language, but instead provide a number
of macros for building a high-level macro language. We will have
more to say about these macros in section 9.

We use the laziness of lazy delegation to break a potential
cyclic dependency. If analysis is based on methods on objects, and
these methods may require delegation, then analysis may depend
on the rewrite function. However, in many stages of compilation,
the rewrite function will require analysis. We use the laziness of
lazy delegation to ensure that the rewrite function is run after the
necessary analysis has taken place.

5. Example: assembly language
Let’s start by defining a simple assembly language as our base
language, encoded with an s-expression concrete syntax.

r ∈ Reg ::= a | b | c | ...
l ∈ Label ::= *a | *b | *c | ...
c ∈ Const ::= 0 | 1 | 2 | ...
e ∈ Expr ::= r | l | c
s ∈ Stmt ::= (mv r e)

| (add r e e)
| (ld r e)
| (st e e)
| (bez e e)
| (jmp e)
| (let ((l s)...) s)
| (letrec ((l s)...) s)

At this language level, values are untyped; although constants are
written as integers, their interpretation depends on their use.

There are two kinds of names at this language level: registers
and labels. Register names have a flat, global scope, and we assume
an unbounded number of them (perhaps this language is to be used
as input to a global register allocator). Code labels, however, have
hierarchical scope, and are bound to program locations withlet
and letrec statements. Note that the body oflet and letrec
statements is a single statement, not a sequence of statements. The
sets of register names and labels are disjoint; labels begin with a*
character, while register names do not.

• addandmv manipulate values in registers. When they are done,
they branch to the label*next.

• ld andst perform loads and stores, transferring data between
the memory system and the register set. Both statements branch
to the label*next on completion.

• bezandjmp perform branching:jmp is an unconditional jump,
while bez branches to its target (the second expression) if the
test value (the first expression) is zero. If the test value is non-
zero, thenbez branches to the label*next. For both state-
ments, the target address can be a register, allowing “com-
puted” branches (and making control-flow analysis, in general,
undecidable). We will later exploit the ability to do computed
branches for functions.

• let and letrec bind labels, with hierarchical, lexical scope. We
can establish sequences and DAGs of code withlet, and con-
struct circular control structure withletrec.2

5.1 Assembly macros

New syntax at this language level is defined with the special form
define-asm-syntax. This is a macro, itself defined in the meta-
language, that introduces a new parser function to the top-level
parse environment for assembly statements. A declaration takes the
form:

(define-asm-syntax keyword transformer)

Additionally, this defines a class namedkeywordwith a rewrite
method defined by the transformer. The parse function that is in-
serted bydefine-asm-syntax into the top-level environment is
also defined by the transformer.

Syntax transformers are built by thesyntax-rules macro. The
form of asyntax-rules transformer should be familiar to anyone
who has used Scheme macros, although there are two notable
differences: the syntax for defining patterns is different, as are the
hygiene rules.

A syntax-rules macro takes the form

(syntax-rules (captured-name...)
(pattern template)
(pattern template)
...)

The patternpart of a macro defines the parser for that syntax
object. Unlike Scheme, assembly language has a number of syn-
tactic types (including statements, expressions and all subtypes of
expressions), and it is possible to define new types of syntax. A
patterntakes the form:

(keyword (name syntax-type) ...)

The (name syntax-type) part parses an object of the type
syntax-type, and binds it toname in the template. For example,
the pattern

(kons (n asm-register)
(x asm-exp)
(y asm-exp))

applied to the form

(kons x 3 4)

would parsex as a register name,3 as an expression, and4 as an
expression. Then, it would build a syntax object of classkons, and
bind the subexpressions to the fieldsn, x andy in it.

We allow another kind of clause in patterns, using the keyword
“...” for pattern repetition. For example, the pattern

(seq (fst asm-stm) (rest asm-stm ...))

2 We have adopted this notation for describing low-level control structure
from a previous design we made for a loop package [21].
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would match

• (seq (jmp *next))

• (seq (mv rb ra) (jmp *next))

• (seq (mv rb ra) (st rc *x) (jmp *next))

Thetemplateparts of the syntax rule define the rewrite function
for the syntax object. In essence, the syntax object is rewritten
to look like the template, with bound variables replaced by their
values. For example, if we define theseq keyword by

(define-asm-syntax seq
(syntax-rules (*next)

((seq (x asm-stm)) x)
((seq (x asm-stm) (more asm-stm ...))
(let ((*next (seq . more)))
x))))

then,(seq (mv x 5) (add x x 10)) would be rewritten

(let ((*next (seq (add x x 10))))
(mv x 5))

This is actually a bit of a simplification. The rewrite function
for an object must return another syntax object, not source code.
We solve this by parsing the template, using a specialized method.
The details of how this works are covered in section 9.

There is one final problem that must be dealt with: that of
hygiene. We don’t want temporary register and label names used in
a macro definition to capture, or be captured by, names introduced
in the use of that macro. We use the common method of renaming
in order to solve this, but there is a complication: in assembly
language, certain names have special meaning, such as the*next
label. We therefore allow the language designer to specifycaptured
namesin the syntax-rules form, which explains to the system
that those names are special, and not to be rewritten.

6. Termination analysis
In Ziggurat, local analysis is easy: we simply perform a recursive
descent on the parse tree. To demonstrate this, we present a sim-
ple termination analysis: a methodhalts? on assembly statements
that returns true if it determines that control will definitely leave the
statement under all starting conditions, and false otherwise. Natu-
rally, this analysis will frequently fail, returning false to indicate
that it simply does not know.

6.1 Termination analysis for assembly language

The analysis we perform on base assembly objects is trivial: if a
statement contains aletrec statement, or ajmp or a bez to a
register, it returns false, otherwise it returns true. This is fairly easy
to express in Ziggurat: we define ahalts? method for each kind
of statement. For example, the analysis method for alet statement
is:
(method asm-let halts?
(λ (s)
(let ((tbl (view asm-let s)))

(and (halts? (hash-table-get tbl ’stm))
(andmap (λ (x) (halts? (cadr x)))

(hash-table-get tbl
’bindings))))))

If the statement part of thelet and the statement part of each
binding all terminate, then the entire statement does as well. If
any of them are not known to terminate, then the result will not
necessarily terminate, either.

This termination analysis is easily implemented, but is very
imprecise: it will return false for most instances of complex code.

The advantage of using lazy delegation comes in here. Consider
our seq macro. There is no termination analysis rule built in for
seq, but by delegating, one can be derived: Ziggurat first translates
theseq statement to lower-level assembly language, and then ap-
plies termination analysis to that. For example, consider the code:

(seq (mv x 5) (add x x 5))

This translates into

(let ((*next (add x x 5)))
(mv x 5))

Our implemented termination analysis tells us that this terminates,
and thus this is the result of runninghalts?.

6.2 The run-n macro: dynamic and static semantics

Suppose we now define arun-n macro of the form

(run-n n s)

so that we may write loops that execute a statements a constant
numbern of iterations. The macro’s definition is:
(define-asm-syntax run-n
(syntax-rules (*next)
((run-n (n asm-const) (s asm-stm))
(letrec ((*loop (seq (bez loop-var *escape)

s
(add loop-var

loop-var -1)
(jmp *loop)))

(*escape (jmp *next)))
(seq (mv loop-var n)

(jmp *loop))))))

This macro simply produces code that executess, n times. Note
that the form will terminate if its arguments does, and ifn ≥ 0.
However, since a use of therun-n macro expands into aletrec
statement, the defaulthalts? analysis will return false. So, we
merely override thehalts? method:

(method run-n halts?
(λ (x) (let* ((tbl (view run-n x))

(loop-num (hash-table-get tbl ’n))
(inner-s (hash-table-get tbl ’s)))

(and (halts? inner-s)
(>= loop-num 0)))))

This produces a more precise analysis. (Note, however, that we’ve
now introduced the possibility that a macro is now able to override a
presumablycorrectbase-level static analysis with one that contains
errors—either accidentally or maliciously. We’ll discuss this issue
later.)

7. Type inference
In the case of termination analysis, our base analysis was so simple
it could be implemented by recursive descent. With most analyses,
we cannot do this directly. In order to do non-local analysis in
Ziggurat, we pass around an analysis object, that describes some
computation to be run at some later time. Each syntax node, then,
rather than running the analysis on itself, describes how to change
the analysis object.

For example, type inference is non-local. In languages with type
inference, such as Haskell, the type of a variable reference might
be dependent on the context of that use, or even on the context
of another use of the same variable. Like many type-inference
algorithms, we represent this analysis as a system of constraints
to be solved.
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E ` e : t′ in t
E ` r : t′ in inst(E[*next])

inst(E[*next])/r = t/r
MVTYPE

E ` [[(mv r e)]] : t

E ` el : word in t
E ` er : word in t

E ` r : word in inst(E[*next])
inst(E[*next])/r = t/r

ADDTYPE
E ` [[(add r el er)]] : t

E ` e : word in t
E ` r : t′ in inst(E[*next])

inst(E[*next])/r = t/r
LDTYPE

E ` [[(ld r e)]] : t

E ` e′ : t′ in t
E ` e : word in t

inst(E[*next]) = t
STTYPE

E ` [[(st e e′)]] : t

E ` e : t in t
JMPTYPE

E ` [[(jmp e)]] : t

E ` e′ : t in t
inst(E[*next]) = t
E ` e : word in t

BEZTYPE
E ` [[(bez e e′)]] : t

E ` s1 : t1, . . . , E ` sj : tj
E[l1 7→ gen(t1), . . . , lj 7→ gen(tj)] ` s : t LETTYPE
E ` [[(let ((l1 s1)...(lj sj)) s)]] : t

E′ ` s : t E′ ` s1 : t1, . . . , E
′ ` sj : tj

LETRECTYPE
E ` [[(letrec ((l1 s1)...(lj sj)) s)]] : t

whereE′ = E[l1 7→ gen(t1), . . . , l2 7→ gen(t2)]

CONSTTYPE
E ` c : word in t

LABELTYPE
E ` l : inst(E[l]) in t

REGISTERTYPE
E ` r : t[r] in t

Figure 3. Polymorphic type rules for assembly language statements (top) and expressions (bottom).

7.1 A type system for assembly language

For the assembly language, both statements and expressions are
typed. The type of an expression represents the kind of value it
represents, while the type of a statement represents requirements
on registers on entry to that statement. In order for this to work, we
need parametric polymorphism: although(add z x y) requiresx
andy to be numbers, it imposes no such requirement onz. We refer
to the types of statements ascode types.Since labels are bound to
statements, and labels can be used as expressions, expressions can
have code types: this reflects the fact that registers can hold code
pointers.

At the lowest language level, presented above, we have only
one base data type:word. A word can be an integer, a character,
or a pointer to structured data. This part of the type system is
deliberately kept open, with the expectation that higher language
levels will elaborate on it.

A monomorphic code type is a mapping from all possible reg-
isters to types. Since this would be highly impractical to represent,
and also far too restrictive, we employ polymorphism by means of
the following type system:

τ ∈ TypeSchema ::= ∀v.t
v ∈ TypeVar ::= α, β, γ, . . .
t ∈ Type ::= word | ct | v
ct ∈ CodeType ::= (l : t; ct)

| v
r ∈ Reg ::= a, b, c, . . .

A code type is represented by the triple (l : t; ct), wherect is
another code type. For example, the code type that maps registerx
to num, y to num, and is quantified over the rest would be repre-
sented (x : num; (y : num; α)). We additionally require that a code
type does not contain the same register twice. (This is enforced,
in the actual implementation, with a parametric kinding discipline.
We have excised kinds from our presentation for simplicity.)

This type system is based directly on Wand’s row polymor-
phism [26], as defined in HM(X) [19]. It introducestype schemas,

which are types quantified over variables. (Note that, in our simple
unkinded system, we use the same set of type variables for both
row and scalar types.)

We define two relations: a relation that assigns types to state-
ments, and one that assigns types to expressions.E ` s : t holds
when statements has typet in environmentE, where an environ-
ment maps labels to type schemas.E ` e : t in t′ holds when
expressione has typet in an environmentE, ande appears in a
statement with typet′. The definition of these relations appears in
Figure 3.

The relations inst and gen refer to type-schema instantiation
and generalization relations.E is a mapping from labels to type
schemas.E[l] is label-environment lookup. Similarly,t[r] is code-
type lookup; it is undefined to look up a register that a code type
does not define.

7.2 Constraint-based type inference

The analysis we implement assigns type schemas to statements. We
do this via a constraint solver: we declare a method

(make-stm-type-goal s t e)

that returns the constraints required to cause statements to have
typet in label environmente.

To represent and solve constraints, we use a variant of the Mini-
Kanren logic-programming system [7]. The basic unit of computa-
tion here is thegoal, which is either satisfiable or unsatisfiable. A
goal can contain logic variables, and in order for a goal to be sat-
isfiable, there must be at least one mapping from logic variables to
types that satisfies it. Running a goal allows us to compute the most
general mapping that satisfies the goal.

The most basic goal is unification. In basic Mini-Kanren, two
values are unifiable if they are equal; but here, this is not enough.
For example, ift is the type (x : word; (y : word; α)), andt′ is the
type (y :word; (x :word; α)), then we want to be able to unifyt and
t′.
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We accomplish this through object-oriented methods. We de-
clareunify to be a method, and require every object used in unifi-
cation to implement this method. It is up to the language designer to
make theunify method symmetric, so that(unify x y) returns
the same thing as(unify y x). Evaluating(unify x y) returns
a subgoal which must be satisfied in order forx to unify withy. For
example, to unify (x : α; β) and (x : γ; δ), we must unify, as sub-
goals,α with γ, andβ with δ. To unify (x : α; β) and (y : γ; δ), the
process is only slightly more complex: we generate a fresh logic
variableε, and unifyβ with (y :γ; ε), andδ with (x :α; ε).

Once type unification is defined,make-stm-type-goal can be
written as a direct implementation of the type rules. For example,
the rule foradd is simply that its two arguments be of typeword
on entry, that its result be of typeword on exit, and that all other
registers remain unchanged. Figure 4 shows the code for the rule.
This system of constraints is very extensible, as we shall see.

7.3 Structured data

This type system has a problem. It is incomplete, and in fact,
unsound: storing to and loading from memory causes data to lose
all type information, allowing a program to access uninitialized
memory, execute arbitrary code, and so forth.

The problem lies in the fact that the only memory operations we
have to work with are too low-level: it’s difficult to come up with
a type system that is both safe and allows for pointer arithmetic.
Most languages take the more reasonable approach of having a type
system for a higher-level language, and translating the guaranteed
safe code to unsafe assembly language. The Ziggurat approach is
more incremental: we write, as a language extension, structured
data-type operations, and then extend the incomplete assembly
language type system with type rules for this structured data.

At the next level above assembly language, we add only three
kinds of structured data: sum types, product types, and named re-
cursive types. The definitions of these macros are fairly straight-
forward, similar to the compilation of structured data operations in
any language.

s ∈ Stmt ::= ...
| (kons r e e)
| (kar r e)
| (kdr r e)
| (left r e)
| (right r e)
| (branch r l l )

A sampling of the macros used to define this new structure can
be found in Figure 5. The basic constructors and destructors are
similar to those found in higher-level languages.

• kons, kar andkdr define product types. The(kons x y) form
builds a two-place data structure (orpair) containing the values
of x and y, and places the result inr. A (kar r x) form
extracts the first value ofx and places the result inr; likewise,
(kdr r x) extracts the second value.

The macro forkons expands into code that performs a sub-
routine call to amalloc procedure to allocate a new two-word
block of storage; this keeps the macro simple and the extrane-
ous details of memory management off-stage so that we may
focus on our static semantics.

• left, right andbranch define sum types. A(left r e) form
builds a two-place sum object with the value ofe for the first
place; likewise,(right r e) builds a two-place sum object
with the value ofe for the second place. A(branch r l1 l2)
performs a conditional branch based on the value ofr: if it was
constructed withleft, thenbranch jumps tol1, otherwise, it
jumps tol2.

(define-asm-syntax kons
(syntax-rules
((kons (n asm-var) (kar asm-exp)

(kdr asm-exp))
(let ((*k (seq (mv n rv)

(st n kar)
(add tmp n 1)
(st tmp kdr))))

(seq (mv arg1 2)
(mv rp *k)
(jmp *malloc))))))

(define-asm-syntax kar
(syntax-rules
((kar (x asm-var) (k asm-exp))
(ld x k))))

(define-asm-syntax kdr
(syntax-rules
((kdr (x asm-var) (k asm-exp))
(seq (add tmp k -1)

(ld x tmp)))))

Figure 5. Macros for structured data

This, in and of itself, is not adequate to build an advanced type
system. Despite the fact that we have built macros for structured
data, the type system is not smart enough to detect what is a proper
use of the basic constructs, and what is not. Code such as

(seq (kons x 1 2) (kdr y x) (kdr z y))

will not signal an error, as it still delegates handling for type
checking to the underlying expanded code. However, we are now
in a position to add extension-specific static semantics to the new
forms.

7.4 Extending type inference

The problem with our type system is that it has no sum types, prod-
uct types or named types: all of these are represented by the univer-
sal word type. So, we begin by defining these, as lazy-delegation
object classes. There is very little functionality in the basic defini-
tion of the classes: at a lower language level, structured data simply
looks like a pointer, and the rewrite function reflects that.

(define pair-type
(make-class (λ (x) reference-word-type)))

The basic functionality of a structured data type is in unification.
As in lower language levels, we define a unify method.

(method pair-type unify
(λ (u v) (let* ((dat (view pair-type u))

(kar (car dat))
(kdr (cdr dat)))

(unify-kar-kdr v kar kdr))))
(declare-method-default (unify-kar-kdr v kar kdr)
(λ (v kar kdr)

(type-error "not a pair type" v)))

(method pair-type unify-kar-kdr
(λ (v kkar kkdr)

(let* ((dat (view pair-type v))
(kar (car dat))
(kdr (cdr dat)))

(all (==-check kar kkar)
(==-check kdr kkdr)))))
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(method asm-add make-stm-type-goal
(λ (s t e)

(let* ((tbl (view asm-add s))
(dst (hash-table-get tbl ’dst))
(srcl (hash-table-get tbl ’srcl))
(srcr (hash-table-get tbl ’srcr))
(next-type (instantiate-type (type-env-lookup e ’*next))))

(fresh (dst-type mirror-dst-type rest-type)
(make-exp-type-goal dst reference-word-type e next-type)
(make-exp-type-goal srcl reference-word-type e t)
(make-exp-type-goal srcr reference-word-type e t)
(==-check t (make-object label-type

(make-row-type (asm-var-name dst)
mirror-dst-type
rest-type)))

(==-check next-type (make-object label-type
(make-row-type (asm-var-name dst)

dst-type
rest-type)))))))

Figure 4. The ADDTYPE rule, procedurally encoded.

E ` el : tl in t
E ` er : tr in t

E ` e : pair (tl, tr) in inst(E[*next])
inst(E[*next])/r = t/r

KONSTYPE
E ` [[(kons r el er)]] : t

E ` e : pair (tl, tr) in t
E ` r : tl in inst(E[*next])

inst(E[*next])/r = t/r
KARTYPE

E ` [[(kar d s)]] : t

E ` e : pair (tl, tr) in t
E ` r : tr in inst(E[*next])

inst(E[*next])/r = t/r
KDRTYPE

E ` [[(kar d s)]] : t

E ` e : tl in t
E ` r : sum(tl, tr) in inst(E[*next])

inst(E[*next])/r = t/r
LEFTTYPE

E ` [[(left d s)]] : t

E ` e : tr in t
E ` r : sum(tl, tr ) in inst(E[*next])

inst(E[*next])/r = t/r
RIGHTTYPE

E ` [[(left d s)]] : t

E ` r : sum(tl tr ) in t
t/r = t′

E ` ll : [r 7→ tl]t′ in t
E ` lr : [r 7→ tr ]t′ in t

BRANCHTYPE
E ` [[(branch r ll lr)]] : t

Figure 6. Type rules for structured types

We want product types to unify with other product types, and
not with any other structured types. Product types unifies with
product typet iff the kar ofs unifies with the kar oft, and the
kdr of s unifies with the kdr oft. This is directly represented in the
type rule.

Finally, we define goals for our structured type macros. With the
rules presented in Figure 6, unsafe code will signal an error.

7.5 Introducing named types

Named types present an additional complication. In order to as-
sociate a named type with a form, we must create an additional
class of syntax node to represent a structured type, and insert them
into the language as extensions. This is reflected in the fact that the
grammar now requires new syntax categories. The new additions
are:

n ∈ TypeName ::= a | b | c | ...

t ∈ Type ::= ...
| n ; Named-type reference
| (x t t) ; Product type
| (+ t t) ; Sum type

s ∈ Stmt ::= ...
| (typedef ((n t)...) s)
| (name r n e)
| (unname r n e)

• typedef introduces named types. The(typedef ((n t)) s)
form introduces one named type,n, in the statements. The type
t describes the internal format of objects of typen. The namen
is visible int; this allows the language user to define a recursive
type.

• nameandunnameconstruct and deconstruct named types. the
(name r n e) form introduces into registerr data of forme,
with the named typen. Logically, then,e must have the same
type as the form ofn. Likewise,(unname r n e) takes data of
named typen from e, strips off the name, and puts the result in
r.

This is easily implemented in Ziggurat. First, we must have a
class for named types. A named type compiles into its internal
form. Thus, if inflist is declared to be(x word inflist),
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E,F ′ ` s : t
TYPEDEFTYPE

E, F ` [[(typedef ((n11) ...) s)]] : t
whereF ′ = F [n1 7→ s1, ...]

E ` r : n in t
E ` e : F [n] in inst(E[*next])

inst(E[*next])/r = t/r
NAMETYPE

E,F ` [[(name r n e)]] : t

E ` r : F [n] in t
E ` e : n in inst(E[*next])

inst(E[*next])/r = t/r
UNNAMETYPE

E, F ` [[(name r n e)]] : t

Figure 7. Type rules for named types

then the object representing the typeinflist rewrites to a pair-
type object containing aword and aninflist. This reflects the
fact the type name is invisible in the data; data of a named type is
indistinguishable from data of that type name’s form.

(define named-type
(make-class (λ (x) (hash-table-get x ’form))))

Unification for anamed-type is simple: a named type only
unifies with itself.

Once we have done that, we still need to define type goals in
this augmented type system. We introduce the notion of atype
name environment. A type name environment is a mapping from
type names to types. A type goal is now of the formE, F `
s : t, meaning that in variable environmentE and type name
environmentF , statements has typet. Implementing this would
seem to present a complication: the object-oriented methods we use
to create type goals take only one environment as an argument. This
is not a problem, though: the environment we use in implementing
type goals is a lazy delegation object, and so we simply add the
type name environment functionality to it, as needed.

With this addition, defining type goals becomes a simple matter.
Notably, there are no type goals generated by thetypedef syntax;
it merely uses the type goals from its inner statement, after aug-
menting the type name environment. Thename andunname state-
ments merely enforce that uses of a named type match the form of
a named type, found in the type name environment.

Parsing becomes a bit more complicated. We now have a new
kind of syntax for type forms, which means we need new syn-
tax classes, syntax environments, and parse methods. Fortunately,
by defining new parse environments, we can still use high-level
macros.

8. Control-flow analysis
We will develop a flow analysis as our final example of an extensi-
ble static analysis. Flow analysis is an important class of static rea-
soning, enabling a host of dependent analyses and optimisations.
As it is non-local, we implement it using a monadic solution, simi-
lar to our constraint-based solution for type inference.

The question asked by a control-flow analysis is simple: for a
particular statement, where might control proceed after complet-
ing that statement? In the case of gotos to explicit labels, this is
trivial to answer: control always passes to the code attached to the
given label. But this is not sufficient: calculated gotos are essential
for compiling code in higher-order languages. Likewise, though,
higher-order languages often know very well where control will
go, and have specialized flow-analysis algorithms.

8.1 Flow analysis for assembly language

For the basic assembly language level, we again start with a naive
flow-analysis algorithm, though we define it in a flexible way. The
goal of the algorithm is to map assembly-language statements to

sets of other statements, or a special symbol⊥, which represents an
unknown control point.

The algorithm for assembly language is simple, and in fact,
completely local: if the statement next branches to one or more
labels, we return the statement that the labels are statically bound
to, otherwise, we return⊥. This, on its own, would be trivial to
implement, much like thehalts? example above.

Once we add more complex control-flow statements, there will
be opportunities for more precise control flow analysis. Most of
these will be fixed-point algorithms, and so, we describe a frame-
work for implementing flexible, modular fixed-point algorithms,
and implement our base analysis in this framework.

This framework, which we callTsuriai, is structured much like
the Kanren-based logic programming system we use for type in-
ference. Algorithms written in Tsuriai consist of a series of assign-
ments of values to variables, which are run until there is no change
in the assignments. For example, if we have two variablesx andy,
wherex is defined byx = y ∪ {3}, andy is defined byy = x∪ {4},
and we wish to find the least fixed point of these mutually recursive
definitions, we would write

(fresh (x y)
(<- x (U y (set 3)))
(<- y (U x (set 4))))

This is a goal in Tsuriai. Running it with arun command tells
us thatx = y = {3, 4}.

To write a control-flow algorithm, we make a variable for each
assembly statement, and the value that is assigned to it is the
set of statements it may branch to. For each assembly-language
statement, we have a methodmake-stm-flow-goal, that returns
a goal. For example, this method on amv statement is

(method asm-mv make-stm-flow-goal
(λ (s e)

(<- (! s) (label-flow-lookup e ’*next))))

The function! returns a unique variable for each statement. The
variablee is not a fixpoint variable, but instead is simply a mapping
from labels to sets of statements.

Since our base-level analysis is so simple, it reaches a fixed
point after a single iteration. However, it is extensible, and adding
new goals for new kinds of statements may make the composite
analysis take much longer.

8.2 Funclets

At higher code levels, we have complex code structures that fre-
quently get compiled to computed gotos, such as function return
or multi-way case statements rendered by means of jump tables.
Although we might not know the targets of these gotos at a low
level, it may be determinable at a higher level. The example we
implement is control-flow analysis for function calls, specifically,
0CFA [20].
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We implement a specialized version of function call,funclets,
which model the control and data-flow substructure of function
linkage. Funclets are a restricted control operator in two ways.
First, they never return, making funclet programming continuation-
passing style. Secondly, the arguments to a funclet can only be
other funclets: other values are passed by side-effect in registers,
in the manner of assembly-language control transfers. Funclets are
intended to be an intermediate stage in the compilation of functions.

c ∈ CVar ::= a | b | c | ...
s ∈ Stmt ::= ...

| (fletrec (((c c c...) s) ...) s)
| (fcall c c c...)

Once again, we have a new syntactic class, in this case, cvars. A
cvar is a variable that is bound to a funclet, and has lexical scope.
A cvar may be compiled into a register or a label, depending on the
context.

We have two new kinds of syntactic keywords.

• Funclets are introduced by thefletrec keyword. A state-
ment of the form(fletrec (((f x) s1)) s2) introduces
one funclet, with the namef . Upon a call, the funclet binds the
variablex to the actual parameter of the call, and runs the state-
ments1. The cvarf is visible in boths1 ands2, while the cvar
x is only visible ins1. These cvars are disjoint from the labels
and registers, and are thus only usable infcall statements.

• Funclets are called with thefcall keyword. A statement of
the form(fcall f x) calls the funclet that is referenced by
the cvarf , with a single actual parameterx. Both cvars,f
andx, can either be bound directly to funclets by an enclosing
fletrec statement, or may be arguments to the current funclet.
This makes funclets first-order data, in the manner of SML,
Haskell or Lisp.

The evaluation of funclets is roughly equivalent to interpra-
tion of continuation-passing-styleλ-calculus. Thus, we can directly
adapt CPS-based flow-analysis algorithms for the language.

8.3 Flow analysis for funclets

Consider the assembly code that sets up an infinite loop by means
of a tight funclet tail-recursion:

(fletrec (((f x) (fcall x x)))
(fcall f f))

The (fcall x x) statement compiles into code that ends with
(jmp g6175), whereg6175 happens to be the register that Zig-
gurat compiles the cvarx into. Since this is a branch to a register,
the base flow-analysis algorithm gives up, and tells us that the desti-
nation of the branch is⊥; in other words, it could be anywhere. But
simple inspection of the code tells us thatx will always be bound
to f; there is only one possible destination of thefcall. What’s
more, there are algorithms that can tell us this.

We implement 0CFA in Tsuriai. The basis of 0CFA is abstract
interpretation. 0CFA simulates running the program, while repre-
senting funclets by their code pointers, and merging all environ-
ment structures into a single value. We implement this by building
Tsuriai goals for each cvar, in order to find all of the funclets that
cvar may be bound to.

For example, the statement(fcall x y) generates a goal

(maps (! x)
(λ (flet)

(let ((formal (car (funclet-formals flet))))
(<- (! formal) (U (! formal) (! y))))))

The functionmaps returns a goal that applies a function to each
member of a set, and combines the goals returned by that function.

In this case,(! x) is bound to the set of funclets that might be
bound to the cvarx. So, for each of those funclets, we want to assert
that the first formal cvar argument of that funclet may also be bound
to the funclets assigned to the cvary, currently represented by the
variable(! y).

9. Macros for writing macros
A macro defines two functions: a parse function and a rewrite func-
tion. For a low-level macro, these are specified directly, with a func-
tion for each, but this is highly inconvenient; what we would like
would be a macro that would allow us to specify these functions by
filling in templates. This is actually a somewhat complex proposi-
tion, since Ziggurat must be flexible enough to allow any number
of language extensions that can change the syntax and semantics of
the language in unpredictable ways. Fortunately, we can solve this
through the use of lazy delegation: by layering environments and
using a variety of parse methods, we can provide several “hooks”
to the language developer.

Each parser takes the form of an environment. An environment
is simply an object with a parse method. The super-object of an en-
vironment is its enclosing environment. For example, if a language
designer wished to implement alet-syntax syntax class, he or
she would make it so that

(let-syntax ((keyword transformer) ...)
statement)

defines a new environment that usestransformer to parse state-
ments with the keywordkeyword, and then parsesstatementwith
that environment.

This structure helps us in the structure of high-level macros.
To make a rewrite method, we build a specialized environment,
and then parse the template. In order to do this, we actually de-
fine a number of new environments. Assembly-language high-level
macros look like:

(define-asm-syntax keyword
(syntax-rules (captured-name...)

((keyword (name syntax-type) ...)
template)
...))

and rely on a number of layered environments.

• base-asm-env
This defines the basic keywords:let, mv, and so forth.

• top-level-asm-env
This environment allows us to define new keywords by side-
effect. This is the environment level thatdefine-asm-syntax
actually manipulates.

• syntax-rules-env
When the programmer usesdefine-asm-syntax, a new ob-
ject of thesyntax-rules-env class is created. This class only
parses one type of clause: thesyntax-rules clause. The re-
sult of this parse method is a function that parses the clause
being defined. Thesyntax-rules clause also defines the class
of syntax objects whose instances are returned by the newly-
defined parse function. The rewrite function is encoded in the
newly-defined class.

• syntax-names-env
This environment is used to parse clauses in the pattern part of
a syntax-rules declaration. It matches the names of syntax
classes to the parse methods used to produce objects of those
classes.

• template-env
This is the environment used to parse templates. This does

119



most of the work of defining the rewrite method. The rewrite
method for asyntax-rules form is actually merely the result
of suspending the parsing of the template under the template
environment.

The template environment is just the parser environment where
the macro is defined, augmented with specialized parse meth-
ods for forms defined by thesyntax-rules form. For exam-
ple, the template environment will rename any label or register
it comes across, save those defined in thecaptured-namespart of
thesyntax-rules form. Likewise, it will replace any of the vari-
ables bound by thesyntax-rules form with their corresponding
value.

For example, consider theseq macro:

(define-asm-syntax seq
(syntax-rules (*next)

((seq (x asm-stm)) x)
((seq (x asm-stm) (more asm-stm ...))
(let ((*next (seq . more)))

x))))

This inserts into thetop-level-asm-env a parser for the keyword
seq. It creates this parser by first building a syntax-rules-env, and
then evaluating thesyntax-rules statement in this environment.
Thesyntax-rules-env parses each individual syntax rule, using
the currentsyntax-names-env in order to parse theasm-stm
keyword, and produces a new parsing function.

This parsing function must return an object of theseq class,
which is also defined by parsing each clause in thesyntax-rules
form. It achieves this by first building a template-env, to parse the
template. For example, the template-env for the first syntax rule
would parse the label*next to the label*next, the keywordx to
argument in the first place of theseq statement, and all other labels
and registers to fresh names. It would then parse the statementx,
which simply returns the first statement; thus,(seq (mv x 5))
parses to(mv x 5).

10. Related work
The idea of using objects to represent syntax is not new. The idea
was first proposed by Dybvig, Hieb and Bruggeman [3]. Others
have attempted to implement analysis on syntax objects, with vary-
ing degrees of success.

The PLT Scheme product DrScheme [4] comes with such a sys-
tem. This system was originally called McMicMac [11], before it
was folded into the DrScheme macro system. However, the analy-
sis this does is limited to the static semantics of Scheme, and it is
primarily a debugging tool.

Maddox [15] has developed a similar object-oriented system for
defining macros that permit static analysis, and linking across lev-
els of the language tower. Ziggurat builds off this work, introducing
monadic operators to allow non-local analysis. For example, Mad-
dox’s system provide a means of doing type analysis with explicit
types, while Ziggurat provides a means of doing type inference. In
addition, Maddox’s system has a fixed system of high-level macros,
whereas Ziggurat allows the language designer to provide both the
parsing function and the transformer as general Scheme functions.
If the language designer wished to parse a form as either a constant
or a label, but not a register, this is possible in Ziggurat.

Nanavati [17] also provides a system for extensible analysis.
In order to implement significant syntactic extensions in Nana-
vati’s system, the programmer was forced essentially to simulate
an object-oriented architecture programmatically, which made for a
fairly awkward, tortured coding style. Ziggurat captures this struc-
ture directly in the linguistic mechanisms of the meta-language.

The related, but orthogonal problem of analysis of multi-stage
programs has been handled in depth by some, notably Walid Taha
et al. [23]. Their system MetaML does not allow for true syntax
extension, and while it allows variables to be sent across language
levels, Ziggurat allows a syntax node to exist at several language
levels simultaneously, permitting a high-level methods to override
low-level methods. This is not necessary for the problems that
MetaML is designed to solve; it is a more focussed technology.

Van Wyk et al [28] add functionality, called forwarding, to at-
tribute grammars similar to Ziggurat’s delegation. In a sense, Zig-
gurat can be seen as adding analysis to macros, while forwarding
in attribute grammars can be seen as adding macros to a modular
program analysis framework.

11. Conclusions and future work
Ziggurat provides a language-extension facility, similar to Scheme
macros, that is flexible enough to work on assembly language, and
powerful enough for advanced program analysis. There is much
work to be done on this system. This includes:

• Certification. One of the disadvantages of the way Ziggurat is
currently structured is that overloaded analyses can give wrong
results, possibly leading to unsafe compilation. Since Ziggurat
is intended as a powerful language extension toolkit, this is
unavoidable in the general case. A possible solution, though,
is to require that certain analyses provide a certificate that their
result obeys certain properties, either that they give a correct
answer, or that they do not violate safety rules. Certification in
this scheme becomes just another analysis.

• Analysis-driven translation. Currently, the results of these
analyses are not used in compilation, though lazy delegation
allows for this. This would be an essential step in implementing
code optimization in Ziggurat.

• General-purpose parsers.Specifying parsers extensibly is a
very difficult problem. Currently, we solve this by only consid-
ering one kind of syntax: s-expressions. However, the monadic
method of specifying analysis suggests a method to parse a
more broad syntax, using recent work in monadic parser com-
binators [9]. Parsing in Ziggurat is currently done by an envi-
ronment, which defines a parsing function. If the environment
instead supplied a parsing monad, there is the potential to make
a more general-purpose parsing algorithm.
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