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Abstract

Soar is an architecture for intelligence that integrates learning into all of its problem-solving behavior. The
learning mechanism, chunking, has been studied experimentally in a broad range of tasks and situations. This
paper summarizes the research on chunking in Soar, covering the effects of chunking in different tasks,
task-independent applications of chunking and our theoretical analyses of effects and limits of chunking. We
discuss what and when Soar has been able to learn so far. The results demonstrate that the variety of learning in
Soar arises from variety in problem solving, rather than from variety in architectural mechanisms.

1. Introduction
Soar is an architecture that is to be capable of general intelligence, displaying abilities in areas such as

problem-solving, planning, diagnosis, learning, etc. (Laird, Newell & Rosenbloom, ??). The architecture
contains a single learning mechanism, called chunking, which saves the results of processing for application to
future similar situations (Laird, Rosenbloom & Newell, 1984, Laird, Rosenbloom & Newell, 1986a). Chunking
was first incorporated into Soar in early 1984 as a particular learning mechanism we had been exploring in the
context of human practice.1. Almost immediately thereafter chunking proved itself capable of several different
types of learning (Laird, Rosenbloom & Newell, 1984, Rosenbloom, Laird, McDermott, Newell & Orciuch,
1985). At first tentatively, but then with increasing commitment, we adopted the hypothesis that chunking was
a sufficient mechanism for all learning.

We have not engaged in a deliberate attempt to test this hypothesis in any definitive way. There currently
exists no taxonomy of learning situations or processes that is well-founded enough to support such an endeavor,
although partial classifications abound, such as learning by experience, learning by example, and learning by
instruction. Instead we have proceeded to explore the operation of Soar in many different directions, observing
the way learning entered into the various tasks and mechanisms studied.

The variety of learning exhibited by Soar seems extensive enough by now to make a listing of all the various

'More details may be found in (Laird, Roienbloom & Newell, 1986b).
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examples worthwhile. That is the objective of this paper. First, we very briefly describe the structure of Soar.
Then we list the different types of learning, using the outline of Figure 1-1. By necessity this listing treats each
of the examples of in its own terms. Furthermore, it isolates them from the larger project context in which they
have occurred (and indeed many parts of the total Soar project receive no mention in this list). We then
redescribe this pool of instances from a more systematic standpoint. Even here the categories we use are
essentially ad hoc, reflecting more our attempt to understand the diversity of what chunking has done in Soar
than any a priori theoretical view of learning.

Effects of chunking in different tasks
Puzzles and toy problems
Syllogisms
Balance beam (children's development)
Seibel's task (stimulus-response)
Rl-Soar (VAX computer configuration)
Cypress-Soar (algorithm design)

Task-independent applications of chunking
Task acquisition
Data chunking
Macro-operators
Constraint compilation
Learning from outside guidance
Abstraction planning
Explanation-based generalization

Theoretical analysis of chunking
Sources of overgeneralization in Soar
Meta-levels in Soar

Figure 1-1: Summary of Soar research relevant to learning

2. The Soar architecture
The following is a brief description of how Soar solves problems and learns during the process. More

complete descriptions of Soar are available in (Laird, 1986) and (Laird, Newell & Rosenbloom, ??).

Soar is based on the hypothesis that all goal-directed cognitive activity can be represented as search in a
problem space. A problem space is defined by a set of states, and a set of operators to move from state to state.
Given a task, represented as a set of problem spaces, Soar uses knowledge to select problem spaces, states, and
operators to move towards a desired state. This knowledge is represented as productions, which are
syntactically similar to OpsS (Forgy, 1981) rules. When the knowledge directly available in a given context is
insufficient to determine the next thing to do immediately, Soar sets up new contexts in which it attempts to
obtain the necessary knowledge.

Soar operates in terms of decision cycles. The decisions relate to progressing towards a desired state:
selecting problem spaces to work in, states to proceed from, and operators to apply. Several pnxluctions may
fire in accumulating the knowledge to make a given decision.

The situations in which Soar is unable to make progress on some goal because of inadequate directly
available knowledge are called impasses. The types of impasses that may arise in Soar systems are determined
by the architecture. For example, a common impasse, operator-tie, occurs when several operators are proposed
as acceptable for application to a given state, and there is insufficient knowledge to choose between them. Soar
exclusively sets up subgoals to resolve such impasses. In order to work on a subgoal, Soar applies all its
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problem solving machinery just as it did for the higher-level goals (selecting a problem space to work on, etc.).
The subgoal to resolve an operator-tie impasse is satisfied when the system acquires knowledge indicating that
one of the operators initially causing the tie is now preferable to all other candidates.

When Soar finishes working on a subgoal, it can learn from its experience by building productions called
chunks for use in future problem solving. The conditions of a chunk are the features of the pre-impasse
situation that were tested during work on the subgoal to resolve the impasse. The actions of a chunk are the
attributes added to the situation that are connected to the embedding supercontext; some of these attributes
terminated the impasse. At first glance one would expect chunking to yield nothing more than rote learning, but
generalization does occur because chunks test only relevant attributes of the problem-solving context (Laird,
Rosenbloom & Newell, 1984).

3. Soar research relevant to learning
This section describes the problem, approach, and results obtained for each topic listed in Figure 1-1.

3.1. Effects of chunking in different tasks
Puzzles and toy problems: The first demonstrations of the power of chunking as a learning mechanism were

obtained with tasks such as solving the eight-puzzle and playing tic-tac-toe (Laird, Rosenbloom & Newell,
1984). These results include within-trial transfer, across-trial transfer, across-task transfer, and strategy
acquisition. One interesting feature is that Soar was able to learn search control knowledge that generalized
across symmetric board positions, even though the representation of the tasks did not include explicit
knowledge of symmetry. Since then, Soar systems have been implemented to solve many of the standard AI
toy problems, and learning behavior has been studied in nearly all of these systems.

Syllogisms: Mental models have been proposed as an alternative to deduction as an account for human
reasoning performance. Our work on building mental models within Soar has centered on the task of solving
syllogisms: given two premises, what conclusions necessarily follow? For example, given that some B are A,
and no C are B, is it necessarily true that some A are not C? Psychological studies of people performing this
task show that syllogisms vary widely in difficulty. People don't necessarily make logically valid inferences;
indeed, in some syllogisms, they nearly always make mistakes. Johnson-Laird (Johnson-Laird, 1983) has
developed a theory that says people solve them by building mental models of possible worlds that could be
described by the premises, and checking them to see if the conclusion holds. He claims the syllogisms that are
the hardest for people to solve are those for which it is necessary to construct the most models. We are in the
midst of an effort to map Johnson-Laird's theories into Soar. Chunking plays a strong role in this mapping, in
terms of learning to draw valid conclusions. Once Soar learns an chunk stating a conclusion is valid in one
model, that production will fire in any other model where that conclusion is valid.

Balance beam: Much of the learning research in Soar centers on the kind of learning that humans display in
the short- to medium-term, which raises an interesting question: Can long-term learning, i.e. the developmental
behavior that children exhibit over several years, also be modeled by chunking, or are different architectural
mechanisms required? In order to discover what role Soar may play in explaining the development of cognitive
abilities, we are building models of problem-solving for a task studied by Siegler (Siegler, 1978). Given a beam
balanced on a fulcrum at the center, the problem is to determine which side of the beam will go down when
certain weights are placed at varying distances on either side. Children's abilities to solve this problem go
through four fairly well-defined stages in the rules used for making predictions. Initially, they base their
predictions only on the weights. Then they consider the distances in order to break ties on the weights, then
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they break ties by combining the weights and distances in some fashion, and finally they use the weights and
distances to compute the correct torques. We are investigating the hypothesis that chunking can be used to
model this gradual increase in sophistication in solving this task. The Soar model of the balance beam task
maps development onto a shift in the problem spaces used by the subject Initially Soar has a set of attributes
about the domain (such as weight and distance), but knows neither exactly which attributes are relevant, nor
how to connect the attributes to the operators that predict which side of the balance beam will go down. Soar
makes predictions, some of which are shown to be wrong by observation, and uses the results as feedback to
create new problem spaces that make better predictions.

Seibel: As part of an investigation into the effects of practice, we are examining a reaction-time task
investigated by Seibel (Seibel, 1963). The task is a psychological experiment in which the subject faces a
display of ten lights, and rests his or her fingers on a set of ten buttons; during each trial, some of the lights will
go on, and the subject is to press the buttons corresponding to the lights that are on as quickly as possible. The
reaction time data for this task obey a power law, and earlier work showed that the power law could also be
obtained from a computer simulation of the process based on chunking (Rosenbloom & Newell, 1983). Soar's
chunking mechanism has a mode in which it only builds chunks for terminal subgoals, which we call bottom-up
chunking, and which can account for the effects of practice under certain assumptions. In recent work, we have
replicated the power law effect for the Seibel task in Soar, under the assumption that reaction times correspond
to number of decision cycles to solution.

Rl-Soar: Rl-Soar was the first demonstration that Soar can combine general problem-solving methods with
large amounts of domain knowledge to solve complex problems (Rosenbloom, Laird, McDermott, Newell &
Orciuch, 1985). The system had about 25% of the functionality of Rl, an expert system for configuring Vaxes.
Because the chunking mechanism caches subgoal results during knowledge-intensive as well as knowledge-lean
problem-solving, we were able to perform several experiments on the effects of learning on performance for the
Rl-Soar task. The knowledge gained by chunking was used in Rl-Soar for search control and operator
implementation. Chunking decreases the amount of effort required in problem-solving even when the system
already has some search control knowledge (a factor of 3.6 for the version without search control, a factor of 2.2
for partial search control, and a factor of 1.7 for full search control). We refer to this reduction as within-trial
transfer, because the system acquires knowledge early on that it may apply to solve later subproblems within
the same trial. As would be expected from an experience-learner, knowledge transferred across trials was also
substantial, yielding a solution length reduction of between a factor of 20 and 200 in subsequent runs of
Rl-Soar on the same task. There turned out to be little effect from transfer across different tasks.

Cypress-Soar: Another knowledge-intensive task to which we have applied Soar is algorithm design (Steier,
1987). Again, we took the approach of reimplementing a previously built system; in this case, Doug Smith's
semi-automatic algorithm designer, Cypress (Smith, 1985). We set about replicating the performance of
Cypress in the design of three sorting algorithms: insertion-sort, quicksort, and mergesort Cypress makes
design choices for these algorithms by instantiating a functional programming template for divide-and-conquer
algorithms, and propagating constraints resulting from these instantiations by a special method of deduction
known as antecedent derivation. We focused only on the methods for making the design choices in Cypress-
Soar, and chose not to reimplement the antecedent derivation engine. As in Rl-Soar, Cypress-Soar was able to
successfully perform its tasks with varying amounts of search control knowledge. Using chunking, Cypress-
Soar acquires both search control and operator implementation knowledge. The effect of within-trial transfer in
one run with minimal search control was to reduce the number of decision cycles by almost 70%. Across-trial
transfer on design of the same algorithm gave reductions of 90-97%. The operator implementation chunks
transferred across designs of different algorithms, reducing the number of decision cycles for subsequent
designs by as much as 20%. We expect the 20% across-task transfer figure would have been higher had we
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implemented a Soar-based deduction engine.

3.2. Task-independent applications of chunking
Task acquisition: Currently, the standard way for Soar to acquire new tasks is for a "Soarware engineer" to

analyze the task and write a set of productions implementing the problem spaces necessary for performing the
task. Since Soar is intended to function autonomously, we need to define mechanisms for Soar to acquire new
task spaces on its own. Our intended approach used a problem space for building problem spaces: one that
would compile task descriptions directly into productions through deliberate processing (i.e., not through
chunking). We have now moved to an approach that uses of the combined learning and problem solving
abilities of Soar. Task acquisition is implemented in a two-phase process. The first phase is communication in
which Soar comprehends the input and store it internally. The second phase is interpretation in which Soar
interpretively executes the task description, and builds chunks to directly implement the task. In the
communication phase, the task descriptions are input in pseudo-natural language in terms of operators, desired,
initial, and illegal states. These descriptions are understood by a series of word-at-a-time comprehension
operators, in a method based on Steven Small's Word Expert Parser (Small80, 1980). These operators either
place information about expectations and meanings of words into the state or package a set of input tokens into
higher level units. The next phase evokes a problem space for interpretation in the event of impasses resulting
from attempts to execute the task. After resolving the interpretation impasses, Soar will build task-
implementation chunks, so that the interpreter will not have to be evoked on subsequent task trials. These
chunks turn out to be nearly identical to the ones that a programmer would have written by hand to directly
implement the task. This two-phase process has now enabled Soar to acquire the eight-puzzle and missionaries-
and-cannibals task spaces.

Data chunking: The evidence accumulated to date clearly demonstrates that chunking can speed up Soar's
performance. However, until recently there has been no evidence that chunking could also be used to acquire
new factual knowledge, and doubts have been raised as to whether it is possible for such an experience-based
learning mechanism to do so. Our work on data chunking is an attempt to demonstrate how chunking can be
used to acquire new knowledge. In the initial phase we are focusing on two simple memory tasks: learning to
recognize, and learning to recall new objects (Rosenbloom, Laird & Newell, 1987). Recognition involves
determining whether the system has ever seen the object before. Recall involves the ability to generate a
representation of the new object on demand. For recognition, a chunk must be learned which contains a
representation of the new object in its conditions, while for recall, the object must be represented In the actions.
For both tasks, the general approach we have taken is to understand what type of problem solving is required in
order to achieve the appropriate chunks. For recall, the more interesting of the two, performance is based on a
generation problem space in which any potential object can be generated. This is a constructive space in which
new objects are built up out of known pieces. When the system receives an object that it should learn to recall,
it generates a representation of it, thus learning a chunk which can generate it in the future. At recall time,
Soar's reflective ability is used to distinguish between the objects that it has learned to generate and those that it
could potentially generate; that is, when all of the chunks have fired, an impasse occurs which the system uses
as a signal that recall should be terminated. We are currently working on two more advanced memory tasks:
cued recall and paired-associate recall. In cued recall, the recall of an item is conditioned on a set of
discriminating cues that can be used as the basis for building a discrimination network for retrieval. This
permits retrieval of an object by partial specifications and is being used as a building block in an
implementation of an EPAM-like system (Feigenbaum & Simon, 1984) for paired-associate recall.

Macro-operators: Macro-operators have been used in a variety of systems since STRIPS (Fikes, Hart &
Nilsson, 1972) to improve the performance of problem-solving systems. A macro-operator is a sequence of
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operators that can be treated as a single operator. Korf demonstrated that it is possible to define a table of
macro-operators showing how to transform all legal states into desired states if the problem is serially
decomposable, that is, the subgoals of the problem can be ordered so that they only depend on preceding
subgoals (Korf, 1983). It is both possible and useful to build macro tables for tasks such as the eight-puzzle and
Rubik's cube. Means-ends-analysis and hill-climbing don't work for these tasks, because the problem solver
has to temporarily undo previously solved subgoals in order to make progress. We have replicated Korf s
results in Soar by using two problem spaces: one for the domain operations of the "conventional" task
decomposition, and one for operators corresponding to serially-decomposable goals (Laird, Rosenbloom &
Newell, 1986a, Laird, Newell & Rosenbloom, ??). The sets of search control chunks learned in the process of
implementing each operator in the second space correspond to macro-operators. In a situation identical to
Korf s macro-operator learner, in which there is no transfer between macro-operators, it would take 230
productions to encode the entire macro table (35 macro-operators) this way. However, Soar needs only 61
productions to encode the table because of the implicit generalization performed by chunking. The fine-grained
encoding of the macro-operators as sets of chunks and the choice of an appropriate task representation makes
this possible. More specifically, the generality arises because the operators are indifferent to the tiles not yet in
place, and the chunks are invariant with respect to reflection, rotation, translation, and position within the
solution path. In fact, so much transfer occurs with this representation that Soar can learn the entire macro table
for the eight-puzzle in only three trials (given the correct set of problems). Similar results were obtained for the
Towers of Hanoi puzzle. Soar was able to encode the entire macro table (six macro-operators) in eight chunks
after a single trial.

Constraint compilation: Many tasks that have been studied in artificial intelligence can be viewed as
constraint satisfaction problems (Steele, 1980). Examples are cryptarithmetic, eight-queens, and the Waltz line
labeling task (Waltz, 1975). If one views the satisfaction of a constraint as the application of an operator, then
formulating constraint satisfaction as problem space search in Soar is not difficult. When a consistent
assignment of values to all variables has been found, then the problem has been solved. This formulation leads
to an interesting application for chunking: networks of constraints can be satisfied by subgoaling in such a way
that chunks can be learned for the efficient satisfaction of a constraint network, or macro-constraint. We have
demonstrated this form of constraint compilation for small networks of digital logic elements, with the chunks
being exactly the productions that would be built by hand to compile the macro-constraint

Learning from outside guidance: We have built a system that learns search control knowledge using
outside guidance in the domain of solving simple algebraic equations in one unknown (Golding, Rosenbloom &
Laird, 1987). The system has a set of algebraic operators, such as add and commute, and must decide which of
these operators to apply and how to instantiate them at each step of the solution. When the system has
insufficient knowledge to select an operator from a set of candidates, it asks for help, which can be given to it in
one of two forms: either it can accept direct advice, or it can accept a simpler problem to solve that will
illustrate the principle it is to use in solving the harder problem. If direct advice is given, the system will first
verify that the advice is correct, thus protecting itself from erroneous advice. During the verification, Soar
builds chunks containing the relevant search control knowledge for future use. This particular type of learning
also occurs in the learning apprentice systems, such as LEAP (Mitchell, Mahadevan & Steinberg, 1985), where
it is called verification-based learning (VBL) (Mahadevan85, 1985). If the advice takes the form of a simpler
problem to solve, Soar attempts to do so, either by brute-force search, or by accepting direct advice about the
simpler problem. In the process, Soar will build chunks that summarize the solution, which will transfer
directly to the harder problem, provided that problem selected was appropriate. This is a simple form of
analogy; we have not yet investigated more complex analogies that would attempt to adapt the simpler problem
solution to the harder problem with deliberate processing.
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Abstraction planning: Another kind of problem-solving behavior that has traditionally been obtained in AI
systems (such as ABSTRIPS (Sacerdoti, 1974)) through special-purpose mechanisms is abstraction planning.
Chunking in Soar has already been used to achieve the effects of non-abstraction planning: ties in operator
selection impasses are often resolved by lookahead, and the chunks formed during the lookahead apply to
reduce effort in problem-solving based on the result of the lookahead. One way to make planning even more
cost-effective is to use abstracted problem spaces for the lookahead search (Unruh, Rosenbloom & Laird, 1987).
Abstraction of problem spaces in Soar is not based on the explicit manipulation of a declarative specification of
operators. Rather, the abstraction is a consequence of ignoring parts of the problem space as needed during
problem-solving. The particular abstractions possible are determined by the manner in which the problem space
has been decomposed into independent subcomponents such as initial state creation, operator precondition
testing, operator implementation, state evaluation and goal testing. When searching in an abstracted problem
space, only the productions implementing the operations that are part of the abstracted space fire, and the
chunks summarizing the processing in the abstracted search transfer to the non-abstracted space. The abstracted
problem-solving has paid attention to a subset of what it would normally examine. Therefore, the chunks
learned can be more general than those learned normally, and the appropriateness of the abstraction determines
how useful the chunks are. This was tested in Rl-Soar with several abstractions. The abstractions used were
removing the backplane-box operator, removing the modules-backplane operator, and removing the state
information about module width. Two abstractions together saved 75% of decision cycles, learning alone saved
60%, and learning together with the two abstractions saved 77%. Issues currently being investigated in this
work are the automatic creation and selection of appropriate abstractions, and the use of multiple levels of
abstractions.

Explanation-based generalization: Using the framework for EBG described by Mitchell, Keller and Kedar-
Cabelli (Mitchell, Keller, Kedar-Cabelli, 1986), we have shown that chunking in Soar implements a variant of
explanation-based generalization (Rosenbloom & Laird, 1986). The domain theory is implemented in some
Soar problem space, and an explanation is the trace of the problem-solving in this space. Chunking uses this
trace in the same way as goal regression uses a proof or explanation. The aim of regression is to describe the
goal concept in terms of operational predicates, where chunking produces a description of the concept in terms
of predicates on attributes of the context that existed prior to the impasse. The condition finding algorithm in
Soar's chunking is essentially the same as regression in EBG except it uses instantiated goals and rules rather
than parametrized versions. The mapping works not only for operator implementation, but also for learning
search control knowledge, where the goal concept is the preference for a selection of an operator. No extra
mechanisms are needed to produce the results of EBG with chunking; the problem solving that is analogous to
EBG's explanation is exactly the same as is used by Soar in other problem solving. To test this mapping, we
took several examples in (Mitchell, Keller, Kedar-Cabelli, 1986) and implemented problem spaces in Soar that
acquired nearly identical concepts to the ones acquired by "conventional" EBG algorithms.

3.3. Theoretical analysis of chunking
Sources of overgeneralization in Soar: Soar exhibits overgeneralization while chunking in several

instances. We now believe that we understand most, if not all, sources of overgeneralization in Soar (Laird,
Rosenbloom & Newell, 1986c). Our investigation was based on the theory of chunking as knowledge
compilation, that is, the conversion of knowledge from one form to another so that it may be used in similar
situations but more efficiently than before. For this conversion to be correct and avoid overgeneralization in
Soar, all of the relevant aspects of the pre-impasse situation that lead to the creation of results must be included
as conditions of a chunk. This is easy as long as the results of a subgoal depend only on the productions that
fired during the subgoal. However, in some subgoals, the appropriate result (such as success or failure) is most
easily detected by testing some feature of the problem solving process, such as the available operators are
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exhausted and there nothing more to do. For example, if the highest number of a set is to be found, and each
step of the problem solving involves comparing one of the numbers to the highest found so far, the problem is
finished when no other numbers are left to be compared. In Soar, detecting that there is nothing more to do
means testing that no more productions can fire for the current situation which in Soar becomes testing for the
existence of an impasse. For chunking to be correct, it must determine why no more productions fired and
includes these reasons in the chunk. Although this may be logically possible, it is computationally intractable
and the resulting chunks can be less efficient than the original problem solving. Therefore, these conditions are
not included and the resulting chunks are overgeneral. This problem arises whenever the problem solving for a
goal is dependent on its own process state (meta-information) which is made available in Soar though the
impasses. Because of these problems, we are currently investigating a variety of methods to recover from
overgeneralization in these cases when it cannot be prevented.

Chunking and meta-levels: We have also analyzed Soar in terms of concepts such as meta-levels,
introspection and reflection (Rosenbloom, Laird & Newell, 1986). Several meta-levels were identified, and
chunking was cast as a means for shifting knowledge from the problem-space meta-level, where its application
is slow and deliberate, to the production meta-level, where its application is fast and automatic. This production
meta-level acts as a long-term cache for the results of problem solving at the higher problem space level, and
improves the efficiency of the problem solver by reducing the need to climb the hierarchy of meta-levels as
often.

4. Soar as a learning architecture
Figure 4-1 lists some questions that might be asked about a particular learning architecture in order to assess

its abilities and compare it to others. This section attempts to answer these questions with regard to Soar.

• When can the architecture learn?

• On what kinds of tasks?

• On what occasions during performance of the tasks?

• From what can the architecture learn?

• Internal sources of knowledge?

• External sources of knowledge?

• What can the architecture learn?

• What kinds of procedural knowledge?

• What kinds of declarative knowledge?

• When can the architecture apply learned knowledge?

• Within the same trial

• Across different trials

• Across different tasks
Figure 4-1: Questions to ask about learning architectures

4.1. When can Soar learn?
When working on different types of tasks: These tasks span the range from simple and knowledge-lean to

complex and knowledge-intensive, from routine to design and discovery. Soar has exhibited interesting
learning on instances of all of these, and is theoretically capable of learning on any task it can perform. The
simple tasks include the eight-puzzle, tic-tac-toe, towers of Hanoi, missionaries-and-cannibals, solving simple
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algebraic equations in one unknown, satisfying logical constraint networks, solving logical syllogisms, balance
beam, simple blocks world, eight-queens, monkey-and-bananas, and the water jug problems. The complex tasks
include computer configuration, algorithm design, and applying sociological theories. Routine tasks include
paired-associate learning and the Seibel task. One discovery task is algorithm design.

Whenever a result is generated: The chunking mechanism is the same for results at any level in the goal
hierarchy, and is invoked independently of the success or failure of the goal. For example, Rl-Soar builds a
chunk for the top-level goal during the successful configuration of a VAX backplane. Learning from failure
occurs during the missionaries-and-cannibals runs; if a move is made that results in there being more cannibals
than missionaries on a bank or in the boat (an illegal state), Soar learns not to make that move again.

4.2. From what can Soar learn?
Internal sources of knowledge: The normal source of learning for Soar is its own problem solving

experience, since it usually functions autonomously. For example, Soar has learned to solve the missionaries-
and-cannibals problems by brute-force search, and to satisfy macro-constraints based on solutions to constraint
networks found previously. The mechanism for all this is uniform. The chunking mechanism takes the traces
of the problem solving as input. The productions that led to the creation of all results are backtraced. The
conditions of those productions testing elements that existed prior to the impasse are vadabilized and made part
of the actions of the chunk. Any elements created during the subgoal that are tied to the superstate are
considered part of the result, and corresponding actions are made part of the right-hand side of the chunk.

External sources of knowledge: Several of the research efforts described earlier illustrate how Soar can
learn from knowledge provided to it externally. In the algebraic domain, the user can supply direct advice on
which of several operators to apply to an equation. Soar can also obtain the same knowledge if the user
supplies it with a similar, simpler problem to solve. The chunks built after solving the simpler problem will
transfer to provide the search control for the original problem. Two other sources of external knowledge now
being tapped by Soar are pseudo-natural language descriptions of task problem spaces and declarative facts.

4.3. What can Soar learn?
Procedural knowledge: A step in a procedure in Soar corresponds to the replacement of a single element in

a goal context A goal context consists of a goal, problem space, state and operator. We can analyze what
procedural knowledge Soar can learn, and has been demonstrated to learn, by examining what aspects of this
context replacement are subject to modification by chunking.

• Goals: The set of possible goal types forms a complete set, fixed by the architecture; goal types are
determined by the decision cycle in response to impasses in a manner also fixed by the architecture.
Consequently, the effect of chunking on the goal element of a context is limited to avoiding the
need for subgoaling.

• Problem spaces: A problem space consists of a set of possible states and operators, and the
architecture does not impose any restrictions on what constitutes a legal set Therefore, Soar must
generate candidate problem spaces, and select from among the candidates. For generation, Soar
can either acquire problem spaces from external descriptions, or can modify problem spaces it
already has to obtain new ones. The work on task acquisition has shown Soar to be capable of the
former. For the latter, problem spaces have been abstracted from old ones by omitting operators in
the work on abstraction planning, and Soar builds new problem spaces during the balance beam
task as well. There is nothing preventing Soar from learning problem space selection knowledge,
we have only a few examples of learning this knowledge, in the context of task acquisition and the
balance beam task.

• States: The selection of a problem space imposes certain constraints on the creation and selection



Learning in Soar: 1987 10

of states. Our main experience to date with acquiring initial state creation and selection knowledge
has been through task acquisition. For creation of states other than initial ones, the processing, and
thus the knowledge to acquire by chunking, is primarily determined by the operator selected for
application to the previous state. Much of the transfer due to chunking comes from learning how to
create states, or implement operators, without subgoaling. For example, in Cypress-Soar, an
operator in the top-level space creates a divide-and-conquer sorting algorithm to satisfy a sorting
specification. The first time through the problem, this operator will be implemented by subgoaling
into a special space for designing divide-and-conquer algorithms, and a chunk will be built that
creates an algorithm such as quicksort for that specification. On subsequent trials, that chunk will
fire to create the new state with the algorithm directly.

• Operators: Operator creation is part of task acquisition, and an equivalent effect was achieved in
learning macro tables for the eight-puzzle and Tower of Hanoi. For operator selection knowledge,
examples abound in the toy problems, in Rl-Soar and Cypress-Soar and in the research on learning
from outside guidance and abstraction planning. Most operator selection, or search control, chunks
result from summarizing the processing in lookahead search, where it is learned that a particular
operator application will be on the path to a solution.

Declarative knowledge: The work on recognition, free recall, and cued recall shows that Soar can learn
declarative knowledge.

4.4. When can Soar apply learned knowledge?
Within the same trial: Knowledge that is learned while solving a problem applied to improve performance

in a later stage of solving the same problem is called within-trial transfer. This may be measured by comparing
the number of decision cycles Soar takes to solve a given problem without learning against how many it takes
with learning. The reduction can be substantial: a factor of 2 for some runs of the eight puzzle, over a factor of
2 for Cypress-Soar, and a factor of 3 for Rl-Soar. The transfer occurs because of the presence of repeated
subgoals during a trial for these problems.

Across different trials: When the system builds chunks for every terminated goal, the only effort required
for solving a problem on the second and subsequent trials is the processing demand by solving the problem with
no search. A chunk in Rl-Soar reduces the number of decision cycles in a solution of the same problem on
subsequent trials by a factor of 20 to 200 in some cases. If the system is learning bottom-up, where chunks are
only built for terminal goals, the processing that is repeated most often gets chunked first Eventually, the
results of bottom-up chunking will be the same as those of all-goals chunking. Work on the Seibel reaction-
time task has shown that the across-trial transfer with bottom-up chunking leads to a power law effect on
performance.

Across different tasks: Across-task transfer occurs in Soar when similar subgoals show up in different tasks;
this happened in Cypress-Soar, in the Seibel task, in several of the toy problems, and to some extent in Rl-Soar.
For example, in the divide-and-conquer formulation of all the sorting algorithms synthesized by Cypress-Soar, a
sub-algorithm must be created to sort lists of length zero or one. Once this sub-algorithm, which merely returns
its input was designed for one algorithm, the chunk built during that design could fire on the design of other
algorithms. Once one of the three algorithms had been designed, such chunks reduced by 10 to 20 percent the
decision cycles needed to design the other two algorithms.
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4.5. What variety of learning has Soar not yet exhibited?
In order to support the claim that chunking is a truly general learning mechanism, it must be studied further in

a number of areas. A partial list of these areas follows:

• Very large problems: We have not yet tested learning in Soar in large (greater than 103 rules)
systems for solving very difficult problems, though this may soon be possible as a consequence of
work in progress on Designer-Soar (for algorithm design tasks) and Neomycin-Soar (for medical
diagnosis tasks).

• Learning from exhaustion: We are currently investigating issues of learning from exhaustion,
that is, learning when a goal terminates because Soar runs out of things to do. This is difficult
because the reason for the exhaustion is not an explicit input to the chunking mechanism.

• Complex analogies: In learning from outside guidance provided as a simpler problem to solve,
Soar performs a rudimentary form of analogy, which requires that the chunks transfer directly.
Soar is not yet capable of more complex analogical reasoning involving deliberate processing to
adapt the solution to the simpler problem. Related to this is the problem of how to use multiple
examples.

• Representation shifts: In the category of problem space creation, we have yet to demonstrate the
creation of "completely new" representations in a task. While there is a moderate shift of
representation in the balance beam task, it is still the case that the set of possible problem space
modifications must be somehow "designed in" beforehand.

• Across-space transfer: Soar has not yet exhibited transfer of knowledge across different problem
spaces. Demonstration of such transfer would significantly increase the transfer of knowledge
gained during the performance of one task to other tasks.

5. Conclusion
We have described how Soar successfully learns in a wide range of tasks and situations. Most of these results

could previously only be obtained from special-purpose learning mechanisms. The variety of learning possible
in Soar does not arise from collecting all these mechanisms into one system. Rather, they have been produced
with a single mechanism, which is general enough to apply to all problem-solving behavior. Thus the diversity
of problem-solving of which Soar is capable is directly responsible for the varieties of learning in Soar.
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